HiSbase: Histogram-based P2P Main Memory Data Management
نویسندگان
چکیده
منابع مشابه
P2P-Datenmanagement für e-Science-Grids
Über die bereits vorhandenen Datenvolumina hinaus, stellt insbesondere die antizipierte Datenflut neuer e-ScienceProjekte Forscher vor neue Herausforderungen. Im Rahmen des AstroGrid-D-Projektes der deutschen Grid-Initiative (DGrid) erforschen wir mit dem HiSbase-System ein durchsatzoptimiertes Datenmanagement für fachspezifische Forschungsverbünde, das wir in Zusammenarbeit mit den führenden Z...
متن کاملP2P Network Trust Management Survey
Peer-to-peer applications (P2P) are no longer limited to home users, and start being accepted in academic and corporate environments. While file sharing and instant messaging applications are the most traditional examples, they are no longer the only ones benefiting from the potential advantages of P2P networks. For example, network file storage, data transmission, distributed computing, and co...
متن کاملHiSim: A Highly Extensible Large-Scale P2P Network Simulator
The popularity of Peer-to-Peer networks is increasing rapidly but developing new protocols for P2P systems is a very complex task as testing and evaluating distributed systems involves high effort. P2P simulators are being developed to tackle this difficulty, to reduce cost and to speed up development. We describe HiSim, a modular and highly scalable P2P network simulator based on the simulatio...
متن کاملScalable community-driven data sharing in e-science grids
E-science projects of various disciplines face a fundamental challenge: thousands of users want to obtain new scientific results by applicationspecific and dynamic correlation of data from globally distributed sources. Considering the involved enormous and exponentially growing data volumes, centralized data management reaches its limits. Since scientific data are often highly skewed and explor...
متن کاملFLoMSqueezer: An Effective Approach For Clustering Categorical Data Stream
Squeezer is an effective histogram based approach for categorical data stream clustering. Drawback of Squeezer is that it is not scalable in terms of memory. The size of histogram increases with the increase in records in the dataset. Accommodation of unpredictably large histogram in the main memory is not always feasible. To handle the bottleneck, a modified version of Squzeer, FLoMSqueezer, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007